Interactions between chromatin states shape the nuclear organization
Noelle Haddad1, Ralf Everaers1, Giacomo Cavalli2, Cédric Vaillant1, Daniel Jost3

1Laboratoire de Physique, ENS Lyon, CNRS UMR 5672, Lyon, France
2Institute of Human Genetics, CNRS UPR 1142, Montpellier, France
3TIMC-IMAG, University Grenoble Alpes, CNRS UMR 5525, Grenoble, France

Correlation between epigenome and contactome

- Epigenome: 1D compartmentalization of the genome. In eukaryotes, the genome is linearly organized into cell-type-specific epigenomic domains [1,2,3].
- Contactome: 3D compartmentalization of the genome. HiC experiments show the 3D partition of the genome into topologically-associated domains (TADs) (Fig. A) [4,5,6].

Polymer modeling of chromatin with epigenomically-driven interactions

- Working hypothesis: chromatin organization is driven by physical interactions between epigenomic loci mediated by chromatin-associated proteins like Polycomb, HP-1 or CHCF [8].
- Model: heterogeneous self-avoiding chain (Fig. E), each monomer representing 10 kbp and characterized by an epigenomic state [7].
- We consider two types of contact interactions: (i) non-specific interactions to account for compaction due to confinement and crumpling; (ii) specific short-range interactions between monomers of the same epigenomic state.

Bottom-up analysis of the model (Jost et al., Nucleic Acids Res., 2014)

- To simplify we assume that interaction strengths are the same for all the chromatin states
- A Complex phase-diagram made of 4 different regions [7] (Fig. F):
 - Coil phase: extended chain conformations;
 - Globular phase: collapsed chain conformations;
 - Microphase separation phase: packing of all the monomers with the same epigenomic state into distinct 3D domains.
 - Multistability region: TAD formation transient/metastable contacts between domains with the same epigenomic state.

Top-down inference: toward a predictive model of chromatin folding

- Maximum likelihood inference with iterative Boltzmann inversion on the number of contacts between TADs or subTADs using a Gaussian approximation of the model that includes crumpling (Fig.G,H)
- Gaussian formalism: fast generation of 3D structures compatible with the data (Fig.H)
- Perspectives: building statistical model for the epigenetic-dependence of interactions and testing the predictive power of the full model (other drosophila species, mutants, etc.)

Finding TAD boundaries. Development of a constrained hierarchical clustering approach to find boundaries between (sub-)TADs. Application to drosophila (Fig.A): median length of 50 kbp (Fig. C).

Quantifying the correlation between 1D and 3D partitions. TADs are in average composed by 80% of the same chromatin state (Fig. D).

References

Acknowledgements
We acknowledge CBP and PSMN for computing resources. We thank IXXI, CNRS, ANR and ERC for funding.

Inference on sliding windows (1.2 Mbp): heterochromatic domains self-interact strongly, euchromatic domains not significantly (Fig.I)